Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Med Phys ; 49(6): 3874-3885, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1802533

RESUMEN

OBJECTIVES: Artificial intelligence (AI) has been proved to be a highly efficient tool for COVID-19 diagnosis, but the large data size and heavy label force required for algorithm development and the poor generalizability of AI algorithms, to some extent, limit the application of AI technology in clinical practice. The aim of this study is to develop an AI algorithm with high robustness using limited chest CT data for COVID-19 discrimination. METHODS: A three dimensional algorithm that combined multi-instance learning with the LSTM architecture (3DMTM) was developed for differentiating COVID-19 from community acquired pneumonia (CAP) while logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), and a three dimensional convolutional neural network set for comparison. Totally, 515 patients with or without COVID-19 between December 2019 and March 2020 from five different hospitals were recruited and divided into relatively large (150 COVID-19 and 183 CAP cases) and relatively small datasets (17 COVID-19 and 35 CAP cases) for either training or validation and another independent dataset (37 COVID-19 and 93 CAP cases) for external test. Area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, accuracy, F1 score, and G-mean were utilized for performance evaluation. RESULTS: In the external test cohort, the relatively large data-based 3DMTM-LD achieved an AUC of 0.956 (95% confidence interval, 95% CI, 0.929∼0.982) with 86.2% and 98.0% for its sensitivity and specificity. 3DMTM-SD got an AUC of 0.937 (95% CI, 0.909∼0.965), while the AUC of 3DCM-SD decreased dramatically to 0.714 (95% CI, 0.649∼0.780) with training data reduction. KNN-MMSD, LR-MMSD, SVM-MMSD, and 3DCM-MMSD benefited significantly from the inclusion of clinical information while models trained with relatively large dataset got slight performance improvement in COVID-19 discrimination. 3DMTM, trained with either CT or multi-modal data, presented comparably excellent performance in COVID-19 discrimination. CONCLUSIONS: The 3DMTM algorithm presented excellent robustness for COVID-19 discrimination with limited CT data. 3DMTM based on CT data performed comparably in COVID-19 discrimination with that trained with multi-modal information. Clinical information could improve the performance of KNN, LR, SVM, and 3DCM in COVID-19 discrimination, especially in the scenario with limited data for training.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Neumonía , Inteligencia Artificial , Prueba de COVID-19 , Humanos , Estudios Retrospectivos , SARS-CoV-2
2.
IEEE J Biomed Health Inform ; 25(7): 2363-2373, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1328981

RESUMEN

COVID-19 pneumonia is a disease that causes an existential health crisis in many people by directly affecting and damaging lung cells. The segmentation of infected areas from computed tomography (CT) images can be used to assist and provide useful information for COVID-19 diagnosis. Although several deep learning-based segmentation methods have been proposed for COVID-19 segmentation and have achieved state-of-the-art results, the segmentation accuracy is still not high enough (approximately 85%) due to the variations of COVID-19 infected areas (such as shape and size variations) and the similarities between COVID-19 and non-COVID-infected areas. To improve the segmentation accuracy of COVID-19 infected areas, we propose an interactive attention refinement network (Attention RefNet). The interactive attention refinement network can be connected with any segmentation network and trained with the segmentation network in an end-to-end fashion. We propose a skip connection attention module to improve the important features in both segmentation and refinement networks and a seed point module to enhance the important seeds (positions) for interactive refinement. The effectiveness of the proposed method was demonstrated on public datasets (COVID-19CTSeg and MICCAI) and our private multicenter dataset. The segmentation accuracy was improved to more than 90%. We also confirmed the generalizability of the proposed network on our multicenter dataset. The proposed method can still achieve high segmentation accuracy.


Asunto(s)
COVID-19/diagnóstico por imagen , Aprendizaje Profundo , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Bases de Datos Factuales , Humanos , Pulmón/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA